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A mathematical model for describing the turbulent flow of a gas suspension in a tube has been formu-
lated within the framework of the combined Euler−Lagrange approach. Results of calculations by this
model are in good agreement with theoretical data obtained using the continuous model developed by
the authors [Teplofizika Ae′ romekhanika, No. 1, 59−71 (1999)]. The importance of detailed modeling of the
turbulent structure of the carrying medium in the near-wall zone has been shown based on a compara-
tive analysis of computational and experimental data.

Flows of a gas with suspended particles are widespread in nature and technology. The character of the
motion of the disperse phase is, to a great extent, determined by the level of turbulent pulsations of the carry-
ing medium. In turn, the particles entrained by the gas flow facilitate additional dissipation of the turbulence
energy of the carrying medium [2, 3]. Therefore, modeling of the mutual effect of the phases at the level of
both the average and pulsation (or turbulence) characteristics is of importance. The problem of mathematical
description of turbulent near-wall flows of mixtures of a gas and solid particles deserves special attention, since
in this case the processes of interaction between the disperse phase and the surfaces bounding the flow become
crucial [1, 2] (work on modeling these surfaces is less advanced compared to other branches of the mechanics
of aerodisperse media).

At present, in studying dust-laden turbulent flows in channels, wide use is made of the so-called con-
tinuous approach [4], where the disperse phase is represented as a continuum with effective properties. The
turbulent structure of the carrying medium is, as a rule, calculated using two-parameter differential models. The
equations of motion of the disperse phase are closed using transport equations for the second single-point mo-
ments of the velocity and concentration pulsations obtained either as a result of implementation of Reynolds
averaging [2, 5, 6] or from the kinetic equation for the probability density function of the coordinate and ve-
locity distribution of the particles [7, 8]. The character of the interaction between the particles and the channel
walls is allowed for by the empirically determined values of the coefficients of accommodation or restitution
[4] of the velocity of the particles after their collision with the surface.

Along with these models, models constructed within the framework of the Euler−Lagrange method of
describing the flow of a mixture have been developed [9, 11]. In this method, the flow of the carrying medium
is modeled by the Reynolds equations with source terms that allow for interphase interaction, while the motion
of the disperse elements is determined within the framework of the single-particle method, which makes it
possible to follow in detail the change in the actual dynamic characteristics of the particles in their motion in
the flow and as a result of collision with the surface. Here the turbulent structure of the carrying medium is,
as a rule, calculated based on the two-parameter k−ε model of turbulence [10, 11]. The effect of the pulsations
of the gas velocity on the motion of individual particles is allowed for by the method of stochastic modeling
[10].

Thus, in constructing a mathematical model of the turbulent flow of a gas with suspended solid parti-
cles in a tube, one should pay attention to the choice of a differential model of turbulence capable of repre-
senting adequately the level of turbulent pulsations of the carrying medium. This work is aimed at evaluating,
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within the framework of the Euler−Lagrange method of description of mixture flow, the efficiency of the dif-
ferential models of turbulent transfer of the class of k-theories of turbulence as to representation of the effects
of the interaction between the particles and the surface.

A steady-state axisymmetric turbulent flow of a viscous gas with a small amount of spherical solid
monodisperse particles is considered. The motion occurs in a vertical tube of constant cross section. The equa-
tions of motion of the carrying medium written in the boundary-layer approximation have the following form:
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where Fx is the force of interphase interaction.
Within the framework of the Lagrangian representation of particle motion, use is made of an approach

[9] according to which all particles entering the tube are divided into groups with the same characteristics. The
motion of the distinguished groups of particles is analyzed by the position and velocity of their representative,
which are determined from the solution of the following system of equations [2, 11]:
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The components of the force acting on a particle, which are represented by the right-hand side of Eq. (5), are
determined by the relations
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The conditions of the turbulent flow of a gas suspension in a tube studied in this work make it possible
to simplify the form of Eqs. (4)-(6). By virtue of the axial symmetry of the averaged flow and the adopted
assumptions typical of the boundary layer, in the part of the problem formulation related to the dynamics of
the particles one can restrict oneself to the following relations:
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It is assumed in (9)-(10) that ω~ri = 0, and the differential equation (10) is used for ω~xi, since, in collision of a
particle with the wall, the value of the component of the angular velocity ω~xi, in contrast to ω~ri, can change
substantially.

Modeling of the actual values of the components of the gas velocity w→~ = w→ + w→  ′ within the framework
of the Lagrangian representation requires reliable information about the averaged turbulent characteristics of the
carrying medium. In this work, we make a comparative analysis of different turbulence models that are used
for calculating the kinematic characteristics of the carrying medium in a gas-suspension flow. For this purpose,
first of all, we use the one-parameter Vasil’ev−Kvon model of turbulence [12]
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ReT
∗  = ρ √k  L ⁄ µg ,   σ1 = 2.1 ⋅ 10−4 ,   σ2 = 4 ⋅ 10−4 ,   σ3 = 0.02 , (11)

and the modifications of the k−ε model by Launder−Sharma [13], Chien [14], and Lin [15]
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which have gained widespread acceptance in calculations of internal flows. The constants and functions of (12)
are given in Table 1.

The values of the pulsation component of the gas velocity w→  ′ are modeled by the random Gauss func-
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the normal Gauss distribution with mean equal to zero and dispersion equal to 1. Their independent values are
determined each time anew after a lapse of the interval of time τT, which is selected as the least between the

lifetime of a turbulent vortex τlag and the time of residence of a particle in this vortex τrel [10]:
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The reverse effect of the disperse phase on the carrying medium can be found from the results of cal-
culation of the trajectories of the representatives of all groups of particles [11]:
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It is assumed in the combined Euler−Lagrange description of mixture motion that the region of inves-
tigation is divided into a finite number of nonintersecting control volumes V (k,j) [16] and the characteristics of
the reverse effect in (14) have definite values for each volume V (k,j).

The boundary conditions for the system of equations that defines the motion of the carrying medium
have the form
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In modeling the interaction (collision) between the particles and the channel walls, use is made of the
approach developed by Sommerfeld [11], which allows for the stochastic character of the roughness distribu-
tion on the inner surface of the tube. According to this approach, the angle of collision of a particle with the
wall is the sum of the angle between the direction of flight of the particle and a straight line parallel to the
generatrix of the channel surface αx and the random angle of slope of the tangent to the rough wall of the tube
∆γx⋅ξwx (Fig. 1):

α~x = αx + ∆γx ⋅ ξwx ,   α
~

x > 0 , (16)

where ∆γx is the mean value of the angle of roughness of the tube surface in the x direction; ξwx is a random
number obeying the normal Gauss distribution with mean equal to 0 and dispersion equal to 1.

A similar technique was used to allow for the roughness of the tube surface in advancing in the cir-
cumferential direction, i.e., along ϕ, which made it possible to substantially improve the quality of the results
obtained.

TABLE 1. Constants and Functions of the Two-Parameter k−ε Model of Turbulence
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The change in the components of the linear and angular velocities in collision of the particles with the
wall depends on whether the interaction between the particles and the solid surface takes place with or without
slipping [17]. Collision without slipping occurs when

U
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; µ0 is the static coefficient of friction, which depends on

the properties of the material of the particles and the wall; e is the coefficient of restitution of the normal
component of the particle velocity upon collision with the wall, which is found experimentally. In such an
interaction, the dynamic parameters of the particles obey the following relations:
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For the case of collision with slipping, according to [11] we take
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Here µd is the dynamic coefficient of friction, which depends on the properties of the material of the particles
and the wall. In this work, its values are determined with allowance for the data of [18]. The coefficient of
accommodation e, which enters (19), is calculated according to [19]:

e = 1 −  1 − exp (− 0.1 _( w→
~

i )1_
0.61)  sin (α~x) . (20)

The problem formulated was solved numerically by the method of finite differences on nonuniform
difference grids that bunched toward the tube inlet and toward the wall so that no less than five nodal points
of the grid were in the viscous sublayer. The governing differential equations and the boundary conditions for
them were approximated by implicit finite-difference analogs with second order of accuracy along the radial
coordinate and first order of accuracy along x. The obtained systems of linear algebraic equations were solved

Fig. 1. Sketch of the modeling of the collision of particles with the wall
surface: 1) particle; 2) wall; 3) virtual surface.
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by efficient factorization techniques. The pressure gradient and the longitudinal velocity of the gas were calcu-
lated using the algorithm of L. M. Simuni [20]. The system of ordinary differential equations that describes the
motion of the particles was solved by the Runge−Kutta method of fourth or fifth order with automatic selection
of the step of integration over time [21]. By virtue of the nonlinearity and interrelation of the equations of the
mathematical model, use was made of global iterations with lower relaxation with a coefficient of 0.1-0.2 being
used in calculation of the terms of (14) that model the reverse effect of the disperse phase on the carrying
medium. The overall computational scheme involves the following stages:

1) numerical solution for a single-phase flow that will serve as the initial approximation for further
calculations;

2) step-by-step calculation of the trajectories of motion of the representative particles of the groups
with simultaneous calculation of the functions of the reverse effect F

→
, εadd, and Φadd;

3) solution of the equations of motion for the carrying medium in the presence of the particles;
4) if the iteration process is not reached, passage to stage 2 occurs.
To obtain a reliable picture of the averaged flow using the considered method of modeling of dust-

laden flows, one must carry out numerous calculations of the trajectories of motion of the particles at each
iteration. In this work, the number of flights of the representative particles at each step was 3000−8000, de-
pending on the regime of mixture flow. Numerical integration of the equations of motion of the carrying me-
dium was carried out on difference grids containing 50 nodes in the transverse direction and 40 in the
longitudinal.

Figure 2 presents distributions of the relative velocity u+ and the energy of gas turbulence k+ (u+ =
wx

 ⁄ v∗  and k+ = k ⁄ v∗
2, v∗  = √ τw

 ⁄ ρ is the dynamic velocity) along the tube radius that were obtained numerically
based on the considered models of turbulence for the case of a steady-state stabilized single-phase flow in a
round tube. As follows from the figure, all tested models of turbulence satisfactorily predict the values of the
velocity both in the laminar sublayer and the buffer zone and in the region of the logarithmic velocity profile.
As to the turbulence energy, here one must note the following. In spite of the acceptable correlation between
the obtained values of k+ = k ⁄ v∗

2 and the test data of [22] in the turbulent flow core, a substantial scatter of the
calculation results is observed near the wall. The lowest values of k+ are given by the Launder−Sharma version
[13]. The modification of the k−ε model presented in [14] predicts the maximum value of the turbulence en-
ergy for moderate Reynolds numbers better, but at the same time it gives overestimated values of k+ on the
tube axis. The best agreement with the data of the measurements made in [22] is observed when the one-pa-
rameter model of [12] and the Lin version [15] of the two-parameter k−ε model of turbulence are used. The

Fig. 2. Comparison of the test data of [22] (points) with predicted values of
the velocity of the carrying medium in logarithmic coordinates (a) and with
calculated values of the turbulence energy of gas k+ in stabilized motion of
a dust-free gas flow in a tube (b) (ReD = 32,000; r0 = 0.02 m); calculation
based on the turbulence models of: 1) [12]; 2) [13]; 3) [14]; 4) [15].

TABLE 2. Coefficients of Friction cf 

Models [12] [13] [14] [15] Blasius formula
M = 0,

ReD = 32 000
0.00586 0.00559 0.00609 0.00565 0.00590
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conclusion drawn is confirmed by Table 2, where calculated values of the coefficient of friction cf =
2τw

 ⁄ (ρU0
2) are presented.

Thus, in numerical study of turbulent single-phase flows in tubes, the version of [15] is preferable
among the considered modifications of the k−ε model, but the model of [12] with geometric relation (11) for
the turbulence scale L can also be used.

For two-phase turbulent flows in a tube the models were tested on the experimental data of [23]
(ReD = ρU02r0

 ⁄ µg = 36,250; Di = 65 µm; r0 = 0.008 m; ρp = 8500 kg/m3; M = 1.92; ∆γx = 1.8o; ∆γw = 4.0o;
µ0 = 0.3; µd = 0.2) and [24] (ReD = 105; Di = 30 µm; r0 = 0.0168 m; ρp = 3960 kg/m3; M = 0.34; ∆γx = 0.9o;
∆γw = 4.0o; µ0 = 0.5; µd = 0.5). In the first case we have a substantially nonequilibrium mode of flow of a gas
with suspended particles characterized by a strong shock interaction between the particles and the tube walls.
The second refers to the mode of a locally nonequilibrium flow for which small velocities of slipping of the
phases and a low level of the rate of collision between the particles and the wall are typical. Figure 3 shows
distributions of the velocity of the gas wx and the velocity of the disperse phase wpx calculated by the relation

wpx = 

∑ 

i=1

N

 (w~xi,m
.

i)

∑ 

i=1

N

   m
.

i















x=const

(21)

Fig. 3. Calculated and measured [a) [23]; b) [24]] profiles of the velocity
of the carrying medium (I) and the dispersed phase (II) in stabilized flow
of a gas suspension in a tube: 1) calculation by the continuous model of
[1]; 2-5) calculation based on the turbulence models [2) [12]; 3) [15]; 4)
[14]; 5) [13]].

Fig. 4. Comparison of the values of the turbulence energy of gas calcu-
lated under the same experimental conditions [a) [23]; b) [24]] in stabi-
lized flow of a gas suspension in a horizontal tube; calculation based on
the turbulence models of: 1) [12]; 2) [13]; 3) [14]; 4) [15].
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for a stabilized portion of flow in a tube, when different models of turbulence are used, and test data of [23,
24]. It is seen that use of the different versions of the k−ε model gives acceptable results in predicting the
velocity of the carrying medium. The models of [15, 12], which provide a higher level of turbulence energy
when r > 0.5r0 compared to the modifications of [14, 13], give values for the disperse phase that are closer to
the experiment (Fig. 4). An increase in the energy of gas turbulence facilitates enhancement of the transverse
motion of the particles, which in this case leads to leveling of the values of the averaged velocity of the dis-
perse phase along the tube radius.

Values of the coefficient of friction cf, the pressure gradient (−∂P ⁄ ∂x), and the rate of collision be-

tween the particles and the tube wall Jw = 
1

NTS
 Σ
i=1

N

 m
.

i (where S is the surface area of the tube wall bounded by

two successive cross sections along x where the number of collisions N is calculated) are presented in Table 3
for the considered modes of turbulent flow of a gas suspension in a tube. As follows from the table, the modi-
fications of [14, 13], which predict a lower level of turbulent pulsations in the near-wall region, provide
smaller values of the coefficient of friction of the gas and the rate of collision of the particles with the wall
and consequently a lower value of the pressure gradient compared to the cases where the models of [15, 12]
were used.

The results obtained indicate the necessity of careful modeling of the intensity of turbulent pulsations
of the gas even for substantially nonequilibrium flows of the gas suspension, when τi >> τlag. It is also neces-
sary to note the closeness of results obtained based on models of different levels of closing ([12] and [15]),
which indicates a weak effect of the disperse phase on the scale L. Moreover, a special study of the effect of
anisotropy of the turbulent pulsations of the gas on the particle flow was carried out. In this case, the values
of the normal Reynolds stresses ρwx

′2
____

, ρwr
′2

____
, and ρwϕ′

2
____

 were determined from the solution of the corresponding
transport equations [25] modified for two-phase flows. However, the data obtained did not show a noticeable
contribution of this method of determining the turbulent pulsations of the gas to the calculated distributions of
the dynamic characteristics of the ensemble of particles.

Thus, a mathematical model of the turbulent flow of a gas suspension in a tube has been constructed
within the framework of the combined Euler−Lagrange method of description of a mixture. The model was
tested on experimental data for different modes of flow of a two-phase medium and showed good agreement
with them. Moreover, the results of the calculations are in satisfactory correlation with theoretical data obtained
using the continuous model [1].

It is found on the basis of a comparative analysis of calculated and experimental data that due a weak
effect of the disperse phase on the turbulence scale, in modeling the turbulent structure of the carrying medium
it suffices to use a one-parameter model of turbulence that contains only one differential equation for the ki-
netic energy of turbulent fluctuations k that includes additional dissipation due to the presence of the particles
in the flow.

TABLE 3. Coefficients of Friction, Pressure Gradients, and Intensities of Collision of Particles with the Tube Wall

Models [12] [13] [14] [15]
Experimental conditions of [23] (M = 1.92)

cf 0.00611 0.00551 0.00532 0.00607

∂P

∂x
1070 892 878 1011

Jw 0.78 0.48 0.52 0.62
Experimental conditions of [24] (M = 0.34)

cf 0.00471 0.00427 0.00420 0.00471

∂P

∂x
741 615 605 671

Jw 0.07 0.045 0.05 0.06

1143



This work was carried out with support from the Russian Fund for Fundamental Research, grant No.
97-01-00471a.

NOTATION

wx and wr, components of the averaged velocity of the gas; x, r, ϕ, cylindrical coordinates; ρ and P,
density and pressure; µg and µT, molecular and turbulent viscosity of the gas; U0, mean velocity in the tube
cross section; g, acceleration of gravity; Fx, force of interphase interaction; z

~
i

→, vector of the position of the
representative of the i-th group of particles (i = 1, ..., N); w

~
i

→ and ω
~

i
→, vectors of the linear and angular velocity

of the representative of the i-th group of particles; mp and Ip, mass and moment of inertia of the particle; t,
time; F

→
di, force of aerodynamic resistance; F

→
Ii, inertial component of the force of interphase interaction between

the gas and the i-th particle; F
→

Mi, Magnus force; mpg→, force of gravity; M
→~

i, torque; Di, particle diameter; ρp,
density of the particle material; w→~ = w→ + w→ ′, actual values of the components of the gas velocity; L and k, scale
and kinetic energy of turbulence; ε = ε

_
 + ε̂, total dissipation of turbulence energy; ε

_
, isotropic component of ε;

ρεadd and ρΦadd, terms allowing for the effect of the disperse phase on the turbulent parameters of the carrying
medium; Πk and Πε, additional redistributing terms in the equations for the turbulence energy k and its dissi-
pation ε; NT, number of realizations of the calculation of the motion of the representative particle of the i-th
group; r0, tube radius; w→ ′, pulsation component of the gas velocity; Ωϕ, projection of the vector of gas vorticity
onto the circumferential direction ϕ; τT, time interval; τlag, lifetime of the turbulent vortex; τrel, time of resi-
dence of the particle in the vortex; N, number of representative particles passing through the volume V (k,j) in
the time ∆ti; m

.
i, mass flow rate of the i-th group of particles; τi, time of relaxation of the i-th particle; ReD,

dimensionless Reynolds number; M, parameter of loading of the flow with the disperse phase (M = Gp
 ⁄ Gg,

ratio of the flow rates of the phases); ∆γw, mean value of the angle of surface roughness in the circumferential
direction ϕ; wx, gas velocity; wpx, velocity of the disperse phase; wx0, gas velocity on the tube axis; (−∂P ⁄ ∂x),
pressure gradient; Jw, rate of collision of the particles with the tube wall. Subscripts: g, gas; T, turbulent; p,
particle; d, dynamic; lag, Lagrangian; rel, relative; D, diametral; 1 and 2, parameters of the particle before and
after collision with the wall surface, respectively.
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